Argon Fluoride Laser Could Lead To Practical Fusion Reactors

The US Naval Research Laboratory (AFL) is developing an Argon Fluoride (ArF) laser that may one day make fusion power a practical commercial technology. New Atlas reports: The wide-bandwidth ultraviolet laser is designed to have the shortest laser wavelength that can scale up to power a self-sustaining fusion reaction. [...] The NRL's ArF laser is intended for a test facility based on the principle of Inertial Confinement Fusion (ICF). In this, a bead of deuterium or tritium, which are heavy isotopes of hydrogen, is fired upon by multiple lasers, heating and compressing it in a fraction of a second to such an extent that the hydrogen atoms implode, fuse together, and release enormous amounts of energy. The new deep ultraviolet laser, also known as a laser driver, is claimed to transfer energy to the fuel bead with greater efficiency and produces much higher temperatures to generate the implosion. Using radiation hydrodynamics simulations the NRL scientists say that performance could be increased a hundredfold with an efficiency of 16 percent, compared to only 12 percent from the next most efficient krypton fluoride laser. Because of these improvements, the ArF laser could lead to smaller and less expensive fusion power plants. However, the team stresses that there is still a long way to go before fusion is hooked up to the national grid. The laser will need to provide the required energy, repetition rate, precision, and billion-shot class reliability for a practical plant. To move towards this, the laboratory is running a three-phase program with the first dedicated to the basic science and technology of the ArF laser. This will be followed by phase two, which will concentrate on building and testing a full-scale high-energy ArF laser, and then phase three where an implosion facility consisting of 20 to 30 lasers will be constructed. "The advantages could facilitate the development of modest size, less expensive fusion power plant modules operating at laser energies less than one megajoule," says Steve Obenschain, Ph.D., a research physicist at NRL. "That would drastically change the existing view on laser fusion energy being too expensive and power plants being too large." The research was published in the Philosophical Transactions of the Royal Society.

Read more of this story at Slashdot.



from Slashdot https://ift.tt/3jAVbgh

SUBSCRIBE TO OUR NEWSLETTER

“Work hard in silence, let your success be your noise"

0 Response to "Argon Fluoride Laser Could Lead To Practical Fusion Reactors"

Post a Comment

ad

Search Your Job